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Topologically Convex Sets and Fixed Point Theory

By

G. Stephen Jones*

In the study of topological invariants associated with convex sets

it is important that large classes of sets which are topologically equi-

valent to convex sets be identified. This is particularly true in inves-

tigations which are concerned with the fixed point property associated

with continuous functions on convex sets. It is the main purpose of this

paper to identify a class of topologically convex sets and to use this

identification to obtain several interesting results in the theory of

fixed points.

For a linear topological space X and subsets A and B of X,

we denote by A, A °, 8(A), and A \ B the closure of A, interior of

A, boundary of A, and the set of all elements in A not in B

respectively. If S C X and x and y are elements of X, then S

is said to be linearly connected relative to x and y when for each

z in S, the set S N Pz is connected where Pz is the 2-dimensional

plane containing x, y, and z. Our principal result concerning topolo-

gically convex sets is embodied in the following theorem.

Theorem 1. Let A and B be two convex sets in a real linear

topological space X such that A N B is bounded. If relative to some

x I in A ° N _(B) and x ° in B° N _(A), A ° n _(B) and B° N _(A)

linearly connected sets, then there exists a one-to-one continuous function
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f which maps A onto A \ B° and f is a homeomorphismon A°.

Furthermore_ if p is the support function of A N B defined relative

to some interior pointj then for arbitrary e > 0, f maybe defined to
be the identity mapoutside the set Ix : p(x) < 1 + c].

Werecall that the Tychonoff Fixed Point theorem states that every

compact convex subset of a locally convex linear topological space has the

fixed point property, [1]. Before proving Theorem1 let us makea straight-
forward application of it together with the Tychonoff theorem in proving

the three essentially equivalent theorems stated below. For this purpose

we define the linear extension of a subset A of a linear topological

space X as the smallest linear subspace of X containing A. If

AC YC x, then (A _ y)O and 8(A ~ Y) denote the interior and boundary

of A respectively in the relative topology of Y. Wedenote a mapping

as compact if its range is contained in a compact set.

Theorem 2. Let X be a locally convex linear topological space,

A a closed convex subset of X, and F a continuous mapping of A into

itself. Let the closed convex hull of F(A) be compact, let B be a

convex body in the linear extension Y of A, and relative to some x 1

in (A _ y)O N 8(B _ Y) and x ° in (B ~ y)O N 8(A _ Y) let

(A ~ y)O O 8(B ~ Y) amd (B ~ y)O O 8(A _ Y) be linearly connected. If

F(A \ (B ~ y)O)C A \ (B _ y)O then F has a fixed point in A \ (B ~ y)O

Theorem 3- Let X be a complete locally convex linear topological

space j A a closed convex subset of X, and F a compact mapping of A

into itself. Let B be a convex body in the linear extension Y of A 3

and relative to some x I in (A ~ y)O N _(B ~ Y) and x ° in

(B ~ y)O N _(A ~ Y) let (A ~ y)O A _(B ~ Y) and (B _ y)O N _(A _ Y)

be linearly connected. If F(A \ (B _ y)O) C A \ (B _ Y)° 3 then F has a

fixed point in A \ (B ~ y)O.
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_. Let X be a locally convex linear topological space,

A a compact convex subset of X_ and F a continuous mapping of A

into itself. Let B be a convex body in the linear extension Y of

A, and relative to some xI in (A ~ y)O O 8(B ~ Y) and x ° in

(B ~ Y)°O 8(A ~ Y) let (A _ y)O O 8(B ~ Y) and (B _ Y)°A 8(A ~ Y) be

linearly connected sets. If F(A \ (B ~ y)O) C A \ (B ~ y)O, then

F has a fixed point in A \ (B _ y)O.

Proofs. Let us suppose the hypotheses of Theorem 4. As subsets of

the linear space Y# clearly A and B satisfy the hypothesis of

Theorem i. Hence there exists a one-to-one continuous function f which

maps A onto A \ (B ~ y)O. Since A is compact f is a homeomorphism

on A and the mapping f-_f is a continuous mapping of A into A.

Hence using the Tychonoff theorem we have that there exist x* in A such

that

f-_f(x*) = x*.

But, of coursej it follows that

F(f(x*)) = f(x*),

where f(x*) is contained in A k (B " y)O so Theorem 4 is proved.

Now let H denote the closed convex hull of F(A). If X is a

complete locally convex linear topological space and F(A) is compact,

then the fact that H is compact is proved in [2]. Hence the hypotheses

of either Theorem 2 or Theorem 3 imply that H is compact. Replacing A

by H we observe easily that the hypotheses of Theorem 4 are satisfied_

so the validity of Theorem 2 and Theorem 3 is established.

These theorems bring out the usefulness of Theorem 1 in providing a

technique whereby a set may be partitioned and the question of fixed points

considered on its component parts. As an example of a situation calling

for such a technique_ let us suppose that the zero element 0 of X is
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contained in the set A, and it is important to know whether or not

F has a nontrivial fixed point in A. If a neighborhood of 0 with

the properties of B can be constructed, then it is clear from our

results that such a fixed point exists. Situations of this type asso-

ciated with establishing the existence of nontrivial periodic solutions

of functlonal-differential equations are discussed in [3].

Let us now use Theorem 1 to prove a fixed point theorem which shows

that, in a rather general sense, all the fixed points of a mapping of a

convex set into itself can not be isolated boundary points and repulsive.

Theorem _. Let S be a closed convex subset of a complete locally

convex linear topological space X, let F be a compact mapping of S

into X with F(S) _ S, and let _ = Ixi : i = 1,2, ..., n) be a finite

set of fixed points under F contained in 8(S). Let

•= INi . i = 1,2_..., n} be a set of bounded convex neighborhoods of

the origin and let Pl J P2 _ "''' Pn denote their respective support func-

tions defined relative to the origin. F has a fixed point in S \

if one of the following conditions is satisfied.

(a) There exist 5 > 0 such that for each x i in A

Pi(F(x) - F(xi) ) __Pi(X - xi )I-5 when Pi(X - xi) is sufficiently small.

(b) There exist kI > 0 such that for 0 < _ -__i and Ni in _,

(kNi)° N 8(S) is linearly connected relative to x i and a point in

8(kNi) 0 S° , and for each x i in &, Pi(F(x) - F(xi) ) __Pi(X - xi) when

Pi(X - xi) is sufficiently small.

In preparation to proving Theorem _j Theorem i, and other results to

follow_ it is convenient to introduce some additional notations. If x is

an element of a linear topological space X and A is a subset of X,

then C(x, A) denotes the cone with vertex at x generated by A. That

is#

C(x,A) = (y : z in A,  >03.
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For x and y in X,

: (i - k)x + ky,xy= [z z =

xy = the closure of xy,

,(xy)--[z : z-- (l-_)x+_y,

0<%<i},

_ _ <_ <=},

and

r(xy) = (z : z = (i - k)x + ky, k =>0}.

The following lemma will be useful in the proof of Theorem 5 when

it is supposed that condition (a) is satisfied.

Lemma 1. Let A be a convex set contained in a locally convex linear

topological space X and let K be a bounded convex neighborhood of the

origin. Let x ° be contained in 8(A) and suppose x I is a point in

8(x ° + K) O A °. For all rI > 0 let x(_) = 8(x ° + _K) O XoXl • Then there

exist positive constants _I and e such that

c(x(_),x° + _nK)n A C (x° + nK)n A,

for all _ in (% ql ]"

Proof. Let us decribe the ray r(XlXo) by the formula

:(_)= (1 - ×)xI + _Xo, × __o.

Since A is convex, obviously _(2) = 2x ° - x I = x 2 is contained in

X \ A. Let p denote the support function of K defined relative to

the origin, and for arbitrary x in X and a > 0 let

N(x,a) : [y : y:x+u, p(u)<a).
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Clearly there exist a constant r such that N(Xl, r) C A and

N(x2, r) C X \ Ao Let 0 < _ < p(x I - Xo) and let c be a constant

such that c _a6(p(xl _ Xo) + p(x ° _ Xl))/r. Let x3 = _x I + (1 - _)x °

and x4 = _ x2 + (1 - _)x o where _p(x I - Xo) = B. Let y = x3 + u

when p(u) _- _r. Then

y=x 3+u=_(x l+_) +(1-_)Xo,

I

x_± + _u is contained in N_Xl,. r). Hence y is contained inand z

z x ° and consequently in A° It follows that N(x3, gr) ( A, and in a

similar fashion it may be shown that N(x4, gr) ( X \ A. Furthermore, it

is clear that

V ° [x : x = (I k)x O + ky, y in N(x3, _r), 0 < k g i} A °

and

V 1 = {x : x = (i - k)x o + ky, y in N(x4, _r), 0 < k -_ i} _ X \ A.

Let CO = C(Xo, N(x4, _r)), C1 = C(x3, N(Xo, B/c) and

v2 = [_ :x (i - _)x3 + _y, y in N(Xo,_/c), × _ 5/_}.

Clearly c > 5 P(X I - Xo)/ r implies

k < (k - l)r

p(Xl-_o)

for k _ 9/_, and considering an arbitrary element x = (i - k)x 3 + kY

in V2, w_ have

x = (i - ×)(=_ + _o) + ×(Xo + Yl) : (× - l)x_+ (2 - ×)xo + _i,
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where p(yl) __ q/c. Letting p = k - l, we have x = _x 4 + (1 - p)x ° + ky I.

Hence if p(kYl) -_ p_r, then x is contained in Co . But by definition

p(yl) -_ %/c, so for k-_ 5/4 it follows that

P(_I) -_×_/c< (× - l)r_/p(xI - xo) : _r,

and consequently V 2 C co. Let

Then e0 = (i - k)x} + k(x o + y2)

Hence we have

be an arbitrary point in 3(Co) O 8(C1).

where 1 - q/c < k < _ and p(y2) -_ q/c.

= x ° + (i - k)_(x I - Xo) + ky2,

whe re

p((l - k)_(Xl-Xo)+ ky2) -_(l-k)WP(Xl-Xo)+ kp(y2)

-_(l-X)_+ ×_/c< _.

Hence every ray r(x3y), y in N(Xo, q/c), intersects Co N N(Xo, _).

Since it is easily varified that such rays must remain in Co once they

have entered, it follows that they intersect 8(N(Xo, _)) outside A

which, of course, implies that C1 N A CN(x o, _) n A. It is clear that

N(Xo, q/C) = X O + C_ K, N(Xo, _) : Xo + qK, and

x3 =x(_) = 8(x o + _K) n o_-_Xl• Therefore, letting c : l/c, _i = P(Xl - Xo)'

we have

C(x(TI) , x o + CBK) I'] A C (xo + _IK) n A,

and our proof is complete.

Proof of Theorem _. Preceding directly now with our varification

of Theorem 5, we assume condition (a) is satisfied. Clearly there exist
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> 0 such that the sets N* = _ Ni, i = l, 2, ..., n are mutually
1 n

disjoint and do not cover S. Let s be an element in S° \ U N_ and

i=l
for i = 13 2, ..., n, let u i = _(x i + N_) n sf_xi and

f--..

vi(_) = 8(x i + _N_)_ 0 ulxi.__ From Lemm_ 1 it is clear that for _ suffi-

ciently small there exists e > 0 such that

c( i(n), xi + n S< (xi + n n S (i)

for i = i, 2, ..., n. Using condition (a) we know that there exist

N1 > 0 such that if N -_ N1 and Pi(X - xi) __ N, then

1

Pi(F(x) - F(xi)) -_FPi(X - xi).
(2)

Hence defining qi' i = i, 2, ..., n to be the support functions of the

sets C(vi(_l), x i + NINi ) it is clear from (I) and (2) that for

qi(x - xi) sufficiently small,

qi(F(x ) _ F(xi)) _>qi(x . xi).

On the other hand we observe that the sets C(vi(B1), x i + qIN._) are

linearly connected relative to the points x i and vi(Bl ). Hence replacing

the sets Ni, i = l, 2, ...3 n in our hypothesis of Theorem 5 by the sets

C(vi(_l) , x i + BIN_) we have that condition _) is met. Therefore,

Theorem 9 will be proved once it is shown to be valid when condition (b)

is satisfied.

Let H denote the closed convex hull of F(S), and let Y denote

the linear extension of H. As we have observed previously the compact-

ness of F(S) implies H is compact and obviously F(H) C H. Assuming

condition (b) is satisfied it is clear that we may chose eI to be such
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that Pi(X - xi) _ cI for each x i in _ implies

Pi(F(x) - F(xi) ) : Pi(F(x) - xi) -_Pi(X - xi) ,

and the sets (B i _ y)O N _(H _ Y) have mutually disjoint closures and

are linearly connected relative to x i and points in 8(B i ~ Y) 0 (H _ y)O,

whe n

e1

Bi: Ix : Pi(X-X i) <

Since the compactness of H implies H is bounded, we can easily verify

that the linear connectivity of (Bi ~ y)O N 8(H _ Y) implies the linear

connectivity of (H ~ y)O N 8(B i ~ Y) relative to the same points. Letting

A i = [x : E/2 -<Pi(X - xi) -< 61, x in H),

it is clear that

Now let F*

F*(x) : F(x) if

F(A i) C H \ Bi, i = i, 2, ..., n.

n

be the mapping defined on H \ U Bi,
i=l

F(x) is contained in H \ iUiBi , and

F*(x): ~ Y) a

in the following way:

if F(x) is contained in Bi. Since the

that F* is well defined and the fact that
n

has the same fixed points in H \ U Bi as
n 4=]

and arbitrary x in H \ U Bi _hgt
i=l

lim [yF(y) : pi(y - x) -_c, y
e _0

Bi's are convex it is clear

F(Ai) C H \ Bi implies F*

F. We observe that for each

in H] = _x).

Pi
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Suppose F(x) is contained in Bi. Then for an arbitrary neighborhood
N(F*(x), _) defined relative to Pi there exist a neighborhood

N(x, v) defined relative to Pi such that

M = (yF(y) : Pi(Y - x) _-v, y in H) 0 8(Bi _ Y) C N(F*(x), c).

Since F*(N(x 3 v)n H) is obviously contained in M it follows that

F*(N(x,v)n N(F*(x),c).
n

Hence it is clear that F* is continuous on H \ U
i=iBi"

Now let NI3 N2J ...3 Nn be open convex neighborhoods of _

B2_ ..._ Bn respectively with mutually disjoint closures. By Theorem 1

for each Bi# there exists a homeomorphism fl on H in Y which maps

H onto H \ Bi and fi is the identity map outside Ni. If

g = flf2 ... fn_ then clearly g is a homeomorphism of H onto H \

and g-_*g is a continuous mapping of H onto H. Hence using the

Tychonoff theorem we have that there exists x* in H such that

n

U Bi3
i=l

g-_*g(x*) = x*.

But, of course, this implies F*(g(x*))= g(x*), and since g(x*) is
n

in H \ U Bi we also have that
i=l

F(g(x*)) = g(x*).

Therefore# g(x*) is a fixed point under F contained in H \ A, and

our theorem is established.

A set SC X is called a star body if there exists a point x ° in

S° with respect to which S is a star set and if each ray r(XoY ) inter-

sects 8(S) in at most one point. The notion of a star body will he used

in proving some of the lemmas to follow which are preparatory to proving

Theorem 1.

Lemma 1. Let X he a locally convex linear topological space and

let SC X be a bounded star body with respect to a point x I in S° .
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Th_n there exists a unique positive continuous function k on X \ [x I]

and a unique continuous mapping _ : X \ (Xl]_ 8(S) such that for each

x in X \ [Xl] ,

= (i-x(x))xI + _(_)_(_). (3)

Proof. Consider an arbitrary point x in X \ [Xl]. Since the ray

r(xlx ) must intersect 8(S) at a unique point, we may denote this

point by _(x). Obviously then x may be expressed by the formula

x --(1- _(_))xl+ _(x)_(x),

where k(x) is a unique positive number. Hence to prove our le_ma we

have only to show that k and _ are continuous at x.

We may assume without loss of generality that x I = 0, and our

formula reduces to x = k(x)_(x). Let N(0) be an arbitrary bounded

neighborhood of the origin and let Nl(0 ) contained in N(0) be a con-

vex neighborhood of the origin such that _(x) is not in Nl(0 ). Let

the neighborhood N2(O ) of the origin be convex and such that

C Nl(0). We let x 2 in r(0 _(x)) be such that x 2 + a N2(O )

is contained in _(x) + N,(0 ) and is disjoint from S for some fixed

a > 0. Consider C(0, _(x) + b N2(x)) , b > 03 and C(m(x),

_(x) + a N2(0 )). Now x in C(0, _(x) + b N2(O)) implies

x = _[_(x) + bYl] , where _ > 0 and Yl is contained in N2(0 ). Hence

x --(2 - _)_(x)+ (_- _)(_(x))+ _byI

--(1-_)_(x)+ _(_(x))+ _byl,

where p = _ - i. Now by boundedness there exist _ > 0 such that

(i - n)_(x)+ _(_(x))+ _b N,(o)C_(x)+ N,(o)
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for all _] such that I_l -_ _ and Ibl-_ _. Hence letting

b -_min[_ 3 a_/_} we have that x = (i - p)_o(x) + p(x 2 + _b yl) which is
P

containedin C(_(x),_(x) + a N2(0))whenever_ > _ _ich, of

course, implies r(0(0o(x) + bYl) ) intersects _(NI(O)) inside C(_(x)3

_(x) + a N2(o))n (x\ :).

sect _(S) inside NI(O ).

_(x)+ N(o) implies_(y)

consequently y = k(y)_(y)

Clearly there must exist

so y is not in x + cb N2(0). Hence y in x + cb N2(0)

is in _(x) + N(0) and the continuity of _ follows.

Therefore C(O, _(x) + b N2(O)) must inter-

It follows that o_(y) not contained in

is not contained in C(O, _(x) + b N2(O)) and

is not contained in C(O, (o(x) + b N2(O )).

c > 0 such that x + cb N2(0 ) C C(0, e(x) + b N2(0 )),

implies _(y)

Now let

p denote the support function of N3(0 ) defined relative to 0.
5 5

arbitrary 5 > 0 we may choose N4(0) C (_ N3(0)) n (- _ N3(O))

that y in x + N4(O ) implies _(y) is contained in
5 5

(_(x) + 2k-_V N3(0)) N (_(x) - _ N3(0)). We observe that

NS(0) C S° be a convex neighborhood of the origin and let

For

such

y - x = k(y)_(y)- k(x)_(x)

: (_(y)- _(x))_(y)+ _(x)(_(y)- _(x))

and

(x(y)- x(x))_(y)= y -x + x(x)(_(x)-_(y)).

Hence

Ik(Y) - k(x) l < Ik(Y) - k(x) l p(_o(y))

___x(p(+_[(y_)+ x(x)(c_(x)-_(y))])},

and it follows that for y in x + N4(0 )
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Therefore

l (y)- i<

k is also continuous and the proof of our lemma is complete.

Lemma 2. Let X be a locally convex linear topological space.

Every closed and bounded star body contained in X is topologically

equivalent to a closed and bounded convex body.

Proof. Let S be a closed and bounded star body in X with

respect to a point x I in S° . Since X is locally convex there exist

a closed and bounded convex body K such that S C K°. By Lemma 1

each x in X \ Ixl} may be uniquely expressed as

x-- (1 I +

where k is a continuous positive functional defined on X \ [xl} and

o_ is a continuous mapping of X \ Ixl} onto 8(K). For each x in

S we define

x - x1

_X) = X I + --[&7i7) ,

where x is in r(xl(o(x)) and _(_(x)) is the positive functional such

that

(i - (Z(m(x)))x I + _(m(x))m(x) = 8(S) n r(xla<X)).

-I
Since K is convex and S is a star body it follows that @ and

are well defined. We easily observe that _S) = K. Since (_(m(x))

is bounded away from zero and continuous by virtue of Lemma 1 it follows
-1

that q_ is continuous, q_ is given by the formula
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-l(y) = Xl + G(_)(y))(y . Xl),

for y in K, and its continuity follows from the continuity of

and s_. Hencewe have that _ is a homeomorphismmapping S onto K
and our proof is complete.

Oneobserves that Lemma2 yields an immediate yet perhaps useful

corollary to the Tychonoff Fixed Point Theoremwhich maybe stated as
follows.

Theorem6. Every compact subset of a locally convex linear topo-

logical space which is a star body in its linear extension has the fixed

point property.

Proof. Since Lemma2 implies every compact subset which is a

star body in its linear extension is topologically equivalent to a compact

convex subsetj this theorem follows trivially from the Tychonoff theorem.

Lemma3. Let A and B be two convex subsets of a real linear

topological space X such that A N B is boundedand let

A = 8(A) 0 8(B). Relative to x I in A ° N 8(B) and x ° in B° O 8(A)

let A ° A 8(B) and B° N 8(A) he linearly connected and let

C = C(Xl, B O 8(A)). Then there exist a one-to-one continuous function

which maps A \ C° onto A \ B° and which maps _ \ (C°U A) onto

\ (B° u A) topologically.

Proof. For each y in A let

Cy = [x : x = (i - k)x I + kz, a in XoY , k -_ 0),

and let P
Y

show that

denote the two dimensional plane containing Cy.
We shall
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C = U (Cy : y in A).
(4)

We begin by letting P- and P+ denote the two half planes composing
Y Y

contains x . Clearly C, Py, P+Py \ _(XoY ) where Py 1 _ y, and Py

are convex. Let z be an arbitrary point in _o " Since

l+ z is containedin A°nB for 5<l and

8(B) N Py N A°C Py_ it is clear that for some unique x m l, r(xlz)(xl)

is contained in 3(A). Since r(xlz)(x ) for x __ 1 must be contained

in P+y and (8(A) O Py) \ BC Py, we have that r(xlz)(_l) is contained

in 8(A) N B°. Hence r(xlz) C c and we may conclude therefore that

CyC C for all y in A. That is, U ICy : y in A] C C.

Now let x be an arbitrary point of C. For some _ > 0,

x = (1 - _)x I = _u, where u is contained in 8(A) O B°. If u is

contained in C(Xo, A), then obviously x is contained in Cy for some

y in A. If u is not contained in C(Xo, Z_), let Pu be the two

dimensional plane determined by Xo, Xl, and u. Clearly there is a

unique arc in 8(A) O P O B from x to a point y in A which cou-
u o

tains u, and XlU must intersect !(XoY ). Since x_ C A ° and

A ° O L(XoY) = XoY it follows that XlU intersects _XoY which, of course,

implies u and consequently x is contained in C . Thus we have
Y

C C u ICy : y in /k] which together with the reverse inclusion obtained

in the previous paragraph establishes (4).

Our next step is to construct a one-to-one mapping q_ which maps

\ B° onto A \ C° . To this end we consider an arbitrary but fixed

point x2 in X/_oXl, an arbitrary element v in A O 8(B) and let

Pv be the two dimensional plane determined by x2, Xl, and v. Since

there is a unique arc in 8(B) n Pv n A from x I to a point y in A

which contains v, we have P = P . Let P* and P** denote the two
v y y y

half planes composing Py \ L(xlY ) where x 2 is contained in l_y. Since

v is contained in P** it follows that r(x2v ) must intersect l(xlY)Y

once and only once. It is clear that the correspondence y <--> C is
Y

one-to-one, so we have that each ray r(x2v ) must intersect the set

8(C) O A once and only once. Now let K be a closed and bounded convex

set such that A O B is contained in K°. It is clear from Lemma 1 that

that each x in X \ [x } may be uniquely expressed as
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x : (i- _(x))x2 + x(x)_(x),

where k is a continuous positive functional defined on X \ {x2} and

is a continuous mapping of X \ [x2} onto 8(K 0 A). For each x

in (A \ C° ) 0 K we define

i_- a(_(x))_ (x -o(x)),q_x)= _(x)+ _(_(x))

where X is in r(x2(e_(x)) and (_(_(x)) and _(_(x)) are positive

functional such that

(i - Ct(O_(X)))X 2 + Ct(Ca(x))(_(x) = _)(B) n r(x2_(x ))

and

(i - _(_(x)))x 2 + _(_(x))_(x) = a(c) n r(x_o(x)).

On (A 0 (X \ K)) we define _x) = x. Clearly the fact that _ and

-1
are well defined follows immediately from the convexity of B and

K and the unique point of intersection property we have established be-

tween 3(C) and any ray r(x_(x)). We also easily observe that

_(_\c°)=_\B °.

Now consider the functional r defined by the formula

i - a(_(x))
_(x)= i - _(_(x))' (6)

for x in A \ (C° UA). We have that A N B is a bounded convex body

and by (4) it is clear that A N C is a bounded star body. Hence using

Lemma 1 we have that a, _, and _ are continuous. Choosing x in

\ (B° U A) there exists a neighborhood N(0) of the origin such that

for y in x + N(O), _(_(y)) < 1 - 5 when 5 is come positive con-

stant. Thus for y in x + N(0) we have
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I
l_(y)- _(x)l = Ii_-_(_(x)_(a(_(x)) - _(_(y)))+ (I-G(_(_))](_(_(y))-_(_(_)))

I (1 - _(_(y))(1 - _(_(_)))

Hence it is clear that the continuity ]_ at x follows from the continuity

of G, _3 and _. We have 3 therefore, that y is continuous on

X \ (C° O A), and since _(x) does not vanish on this domain, the func-

tional {(x) = 1 / [(x) is also continuous. In addition, we observe that

o _ r(x)< z,

on A \ (C ° UA), since 1 >_(_(x)) > #(_o(x)) >0.

Returning to our mapping _ we have that the continuity of

on (A \ (C° U A)) O K° follows immediately from the continuity of (_

-1
and ]_. Also _ on (A \ (B° U A)) N K° is expressed by the formula

-Z(y) = _(y) + {(y)(y _ _(y)), (7)

so the continuity of -1 on (A \ (C° U A)) N K° follows from the

continuity of _ and _. Now consider an arbitrary point x in

A U (A O 8(K)) and let y be an arbitrary point in X \ C °. We have

{y) - {x) = _(y) + r(y)(y - _(y)) - _)

= (1 - y(y))(_(y) - _(x)) + _(y)(y - x),

(8)

if y is in (A \ C°) O K, and

#y) - _(x)= y -_,
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if y is in A A (X \ K). Since 0 -_]_(y) < i, it is clear that the

continuity of _ at x follows immediately from the continuity of

at x. Hence we have that @ is continuous on (A \ C° ) O K. The

extension of the continuity of q_ to the remainder of A \ C° follows

trivially, so we have that @ maps A k C ° onto A \ B° continuously.

Now let y be contained in A O 8(K) and consider the transforma-

-1 we havetion @ . For arbitrary z in A k B°

-l(z) _ -l(y)_-_(z)+ _(z)(z-_(z))-_(y)

= (l- _(z))(_(z)-_(y))+ _(z)(z- y),

if y is in (A k (B° UA)) N K, and

-i(_) _ -l(y): z - y,

if y is in A O (X \ K). It is easily verified that there exist a

neighborhood in y on which _ is bounded so it is clear that the
-1

continuity of @ at y follows from the continuity of _ at y.
-1

Thus @ is continuous on (A \ (B° U _)) O K and the extension to

the remainder of A \ (B° U &) follows trivially. We may conclude,

therefore, that _ is a homeomorphism on A \ (C° U &) and the proof

of our lemma is complete.

Lemma 4. Let X, A, B, and C be defined as in Lemma 2. There

existsa homeomorphism _ mapping A \ C° onto A.

Proof. Let Xo, A, Cy 3 and P be defined as in the proof of

Lemma 2. Let x 3 be a point in (A° y\ B) N P(XlX o) and let

C* = C(xs, B O 8(A)). By the boundedness of A O B and the convexity

of A, obviously every ray in C* must intersect _(A) at a unique

point. For arbitrary u in B° N 8(A) we consider the segment x3u
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in C*. It was established in the proof of Lemma2 tbat u must be

contained in Py for some y in _. Since XoX1 is contained in

Py it follows that r(x3u ) is contained in Py. Since x 3 is an
exterior point of C and u is an interior point it follows thatY
x2u must intersect 8(C) at a unique point.

By Lemma1 we mayexpress each x in C* k [x3} uniquely as

x = (1 - _(x))x2 + _(x)v(x),

_here _ is a continuous positive functional on C* \ Ix 3} and v is

a continuous mapping of C* \ Ix 3} onto B N 8(A). We define _(x) on

C* \ C° by the formula

x - x 2

_(x): x2 + _-UC_V)' (9_

where x is in r(x2v(x)) and _(v(x)) is the positive conti_uous func-

tional such that

(i- n(v(x)))x2 + _(v(x))_(x): _(c)0 r(x2_(x)).

On A \ C _ we define @(x) = x. Clearly _ and _-i are well defined

by virtue of the unique point of intersection property established between

and _(C) in the previous paragraph. Also we can easily verify

that _(A \ C° ) = A.

Since _(v(x)) is continuous, bounded, and bounded away from zero

on C* \ C° it is clear from (9) that _ and _-l are continuous on

C*° \ C° and C*° N A respectively. Let x be an arbitrary point in

8(C*) 0 A and let y be arbitrary in A \ C° . We have

y - x 2

_(y)- _(x)= x2 + -_) + x

s (1- 1
q(V(y)) ) (x2 - y) + (y -x),
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if y is in C*3 and

- : y - x,

if y is in A \ C*. Hence it is clear that the continuity of _ at

x follows from the continuity of _ and v and the fact that

_(v(x)) = 1. Hence _ is continuous on C* \ C° and it follows trivi-

ally that _ is continuous on all of A \ C° . In a completely analogous

fashion we may verify the continuity of _-l on all of A. Hence

is a homeomorphism mapping A \ C onto A and our proof is complete.
O

Theorem 1. Let A and B be two convex sets in a real linear

topological space X such that A 0 B is bounded. If relative to some

x I in A ° 0 8(B) and x ° in B ° 0 8(A), A ° 0 8(B) and B° n 8(A) are

linearly connected sets 3 then there exists a one-to-one continuous function

f which maps A onto A \ B° and f is a homeomorphism on A °. Further-

more if p is the support function of A N B defined relative to some

interior point_ then for arbitrary c _ O_ f maybe defined to be the

identity map outside the set Ix : p(x) _ 1 + c].

Proof. Let C be defined as in Lemma 3. Clearly K 3 as speci-

fied in the proof of Lemma 3, may be chosen such that

K-- Ix : p(x)

Hence q_ as constructed in the proof of Lemma 3 is a one-to-one con-

tinuous mapping of A \ C° onto A \ B° which is a homeomorphism on

A ° and is the identity map outside K. Also _ as constructed in the

proof of Lemma 4 is a homeomrophism mapping A \ C° onto A and in

the identity map outside K. Therefore_ f = _-l is a one-to-one

continuous mapping of A onto A \ B° which is a homeomorphism on A °

and the identity map on A \ Kj so the proof of our theorem is complete.
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As a final remark we mention that Theorem1 is one of several

similar theorems concerned with topologically convex sets which have

very interesting applications in the theory of fixed points. For

example, a theorem of the sametype is presented in [4] and used to

establish an asymptotic fixed point theorem which is very useful when

investigating periodic systems in Banachspace.
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